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Abstract

In this paper, we present a category-specific image denoising algorithm that exploits
patch similarity within the input image and between the input image and an external
dataset. We rely on standard internal denoising for smooth regions while consulting ex-
ternal images in the same category as the input to denoise textured regions. The external
denoising component estimates the latent patches using the statistics, i.e. means and co-
variance matrices, of external patches, subject to a low-rank constraint. In the final stage,
we aggregate results of internal and external denoising using a weighting rule based
on the patch SNR measure. Our experimental results on five datasets confirms that the
proposed algorithm produces superior results compared with state-of-the-art denoising
methods both qualitatively and quantitatively.

1 Introduction
Image denoising is a prevalent, well known, yet ill-posed problem in low-level vision, where
the aim is to recover the clean image from its noisy version. Since the problem is under-
constrained due to missing information, regularization assumptions on the noise model are
taken into account including the noise is additive white Gaussian and stationary, and there
is no correlation between contaminated pixels. Furthermore, the variance of the noise is
usually assumed to be known.

During the last decade, many patch based algorithms [2, 9, 10, 11, 12, 14, 17, 21, 22, 30,
34, 37] have been developed to improve the performance of noise removal. Nevertheless,
their performance is often a marginal improvement to the BM3D method [10], which is
still considered a widely accepted baseline even after a decade. According to Chatterjee et
al. [7] and Levin et al. [23], BM3D achieves near optimal performance, close to theoretical
limits on natural images. However, there is still a possibility in performance improvement of
denoising using external images [7, 23, 24].

Internal image denoising with a single image is popular and usually has a low compu-
tational load. Earlier techniques focused on recovering noisy pixels from their neighboring
noisy pixels e.g. Gaussian filtering, bilateral filtering, and total variation. Later algorithms
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focused on re-occurrence of patches [18] in the noisy image to reconstruct the noise-free im-
age, examples are non-local means [2], BM3D [10], WNNM [19], SAIST [13], SAPCA [11],
and TSID [37]. These algorithms are effective for areas with repetitive texture, however, on
the downside, they suffer when they attempt to find corresponding matches for infrequent
patches i.e. the patches that are rarely present in the image. To overcome this issue, some
methods [25, 33] proposed alternatives albeit with limited applicability. Moreover, when the
noise is strong, internal denoising performance degrades drastically as it struggles to find
correct reference patches.

To complement internal image information, other works[26, 27] resorted to external tar-
geted datasets for image denoising. This strategy improves the denoising in specific situ-
ations but requires correlated image datasets, and thus fails when the dataset variation be-
comes high for the same object. Another problem with these algorithms is they involve an
exhaustive search policy, which makes them computationally expensive. Alternatively, sev-
eral learning methods, such as EPLL [39], PCLR [8], PGPD [32], KSVD [14], and MLP [3],
were proposed to derive priors from natural noise-free images or the input image itself. How-
ever, these learned priors are generic for natural images and are not specific to any image
category.

Since internal denoising and external denoising both have their own strengths, attempts
have been made to incorporate both [4, 28, 35]. Mosseri et al. [28] modified the internal
denoising to exploit external natural image patches for textured regions, however, it has
the same shortcoming as of generic priors. Yue et al. [35] combined internal and external
BM3D for denoising. Although it has shown promising results in scenarios where same
external images having different scales and orientations are used, it fails to demonstrate such
performance when the images are different, even if they belong to the same category.

In this paper, we propose a novel image denoising method that consolidates the strengths
of internal and external denoising techniques in a complementary manner. We achieve this
by exploiting category-specific information using high frequencies from external patches and
low frequencies from the noisy image. For computational efficiency, we design a strategy to
select patches of interest from the external images without excessive computational burden.

Our method is based on the intuition that, although internal denoising methods are capa-
ble of locating similar patches within smooth regions of the input image, it might be more
effective to look up external clean images to denoise textured regions. This is because, when
there is no noise, it is straightforward to gather a high number of similar patches. However,
there would be a limited number of patches depicting a similar spatial pattern to a highly
textured patch.

2 Denoising framework

Suppose that we are given a noisy image Y, which is related to the original image X as

Y = X+N, (1)

where N is the noise component with a variance σ2
n . Our aim is to recover X, using the

additional input from a dataset of images {Zi : i = 1, . . . ,K}.
The process flow of our algorithm is illustrated in Fig. 1. It comprises four stages: candi-

date patch search, internal denoising, external denoising, and aggregation of the two denois-
ing results.
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Figure 1: Framework of our denoising algorithm. For high noise levels, i.e. σn > 40, the
whole procedure is iterated twice while it is applied once for low noise levels, i.e. σn < 40.

2.1 External patch search
In this section, we describe the process of selecting external patches that are similar to highly
textured patches in the input image. Such patches are identified using a smoothness measure
νi as described in Section 2.3. The patch selection process occurs in two stages. Firstly, can-
didate external images are selected from a category-specific training dataset. In the second
stage, we locate external patches that are similar to a given noisy input patch.

We specifically designed our algorithm to retrieve images from the external database.
We select a preset number of external images that are structurally most similar to the input
noisy image based on the structural similarity index (SSIM). This helps pruning the number
of searches incurred during the denoising process.

Next, for each noisy patch y, we search for the most similar external patches. A number
of algorithms such as [28, 36, 38] search for reference patches in external databases using
KD-tree and graph-cut . However, these search methods are not sufficiently efficient for large
databases. We opt for the PatchMatch algorithm [1] and modify it to retrieve the reference
patches efficiently from external datasets in the two following steps.
Initialization: For faster convergence, we initialise the nearest neighbor fields with zero
displacement and the scale equal to the current scale of the patch, this is based on the idea
that good similar reference patches can be found in the neighborhood of the noisy patch.
Propagation: PatchMatch [1] provides the option to select multiple reference patches from
a single external image for a noisy patch. However, this option is not feasible for our algo-
rithm as searching for multiple reference patches is time consuming. Therefore, we present
an alternative to increase the number of patches without searching multiple times through
the image for a single noisy patch. Our idea is inspired by the works in [2, 10], which
suggests that good reference patches can be found in the neighborhood. Hence, we extract
eight neighbor patches which are one pixel apart in every direction from the current selected
reference patch. This approach is more computationally and time efficient than the original
patch match method, while providing sufficient external information for denoising. As a re-
sult, for each noisy patch yi, we obtain top external patches from each of the closest external
candidate images. Finally, we only retain Ti patches in each pool whose Euclidean distance
from the input patch yi is no more than a threshold δ .

2.2 External denoising
Next, we detail the external denoising component with input from external images. To for-
mulate the problem, we choose to express patches using the Discrete Cosine Transform
(DCT) domain. The DCT space can be represented as a linear transformation with an or-
thonormal basis Φ ∈ RD×N , i.e. ΦT Φ = I. In our representation, the pixel intensity vector
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yi in the noisy patch, and that of the latent patch xi, are related to their respective DCT co-
efficients βi and αi as βi = Φyi and αi = Φxi. In addition, for each patch yi from the input
image, we have collected a set of Ti external patches {zi, j : j = 1, . . . ,Ti} similar to it. Let us
denote {γi, j : j = 1, . . . ,Ti} as the transform coefficients of zi, j and the mean and covariance
matrix estimated from these transform coefficient vectors as µi and Σi, respectively.

2.2.1 Objective function

Fidelity Term: First, we define the conditional likelihood of the input noisy image and the
original noise-free image, which is given by

p(Y|X) ∝ exp
(
−‖Y−X‖2

2
σ2

n

)
, (2)

In Equation 2, the aim is to maximise the conditional log likelihood to recover the noise-
free image Y, which is same as minimizing the data fidelity term ‖Y−X‖2

2. Since each pixel
value in the image is shared by approximately the same number of overlapping patches, the
data fidelity term can be approximated as ‖Y−X‖2

2 ≈
1
N ∑

N
i=1 ‖yi− xi‖2

2, where N is the
number of patches in the image. Moreover, due to the orthonormality property of the basis
function, we obtain ‖αi−βi‖2

2 = ‖Φ(yi−xi)‖2
2 = ‖yi−xi‖2

2, and after simplification we get

‖Y−X‖2
2 ≈

1
N

N

∑
i=1
‖αi−βi‖2

2. (3)

Patch group membership: Here, we present another constraint which imposes the simi-
larity between noisy patch and the set of reference patches. In order to recover the patch
xi from the noisy patch yi in transform domain, we compute and rely on the statistics such
as mean (µi) and covariance matrix (Σi) of the reference patch group. Moreover, We con-
sider that similar patches in the transform domain is part of Gaussian distribution and the
most probable xi is one that maximises its likelihood of belonging to the reference patch
group, i.e. p(αi|µi,Σi) ∝ exp

(
− 1

2 (αi−µi)
T Σ
−1
i (αi−µi)

)
. This is similar to minimizing the

log-likelihood in the transform domain

log p(αi|µi,Σi) ∝
1
2
(αi−µi)

T
Σ
−1
i (αi−µi), (4)

Low-rank constraint: We further formulate a low-rank constraint and the intuition behind
this constraint is that the local structure of a patch can be sparsely represented by a basis with
a low cardinality. Therefore, when similar patch vectors are stacked as columns of a matrix,
the matrix should exhibit the low rank property. We formulate our problem similar to Candès
and Recht [6]. We form a data matrix Mi which contains the transform coefficients of each
latent patch xi and its reference patches as its columns i.e. Mi = [αi,γi,1, . . . ,γi,Ti ]. Our aim
is to minimise the matrix nuclear norm ‖Mi‖∗, which is the sum of its singular values.

2.2.2 Optimisation

In this section, we present the optimization for external patch denoising. To obtain the ob-
jective function, we aggregate the terms in Equations 3, 4 and the nuclear norm constraint
for i-th noisy patch. In addition, we introduce auxiliary term to substitute for the equality
constraint Mi = [αi,γi,1, . . . ,γi,Ti ]. The resulting objective function is formulated as

(α∗i ,M
∗
i ) =argmin

αi,Mi

1
σ2

n
‖αi−βi‖2

2 +λ1(αi−µi)
T

Σ
−1
i (αi−µi)

+λ2‖Mi‖∗+
‖Mi− [αi,γi,1, . . . ,γi,Ti ]‖2

F
(Ti +1)σ2

n
.

(5)
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Here, the normalisation factor 1
(Ti+1)σ2

n
takes into account the image noise and the number of

reference patches. We apply coordinate descent to minimise the cost function in Equation 5,
with respect to either αi or Mi, while keeping the other variable fixed.
Compute αi with fixed Mi: First we fix the value of M∗i and compute for αi by solving the
following sub-problem

α
∗
i = argmin

αi

‖αi−βi‖2
2

σ2
n

+
‖αi−M∗i (:,1)‖2

2
(Ti +1)σ2

n
+λ1(αi−µi)

T
Σ
−1
i (αi−µi), (6)

where M∗i (:,1) denotes the first column of the matrix M∗i . taking its derivative w.r.t. αi leads
to,

α
∗
i =

βi +λ1σ2
n Σ
−1
i µi +

M∗i (:,1)
Ti+1(

Ti+2
Ti+1 I+λ1σ2

n Σ
−1
i

) (7)

Compute Mi with fixed αi: Now with α∗i values in hand, we form the data matrix M̂i ,
[α∗i ,γi,1, . . . ,γi,Ti ] for every patch. The sub-problem to be solved with respect to Mi is then
stated as

M∗i = argmin
Mi

‖Mi−M̂i‖2
F +ζ‖Mi‖∗, (8)

where ζ = λ2(Ti +1)σ2
n .

Let us consider that we have UΛV T as the singular value decomposition of M̂i, with Λk
being the k-th singular value. Cai et al. [5] derived the optimal solution to Equation 8, by
soft-thresholding the singular values as

M∗i =USζ (Λ)V T , (9)
where Sζ (Λ) = diag({(Λk−ζ )+}) is the soft-thresholding operator with (x)+ = max(x,0).

The final step of the external denoising component is to recover the full image from all
the patches. Once we have the transform coefficients αi, we compute the patch intensity by
an inverse transform as xext

i = ΦT αi,∀i = 1, . . . ,M, where Φ is the DCT basis.

2.3 Combined internal and external denoising
Now we combine the results of the internal and external denoising component. Here, we opt
for BM3D [10] as the internal denoising component due to its efficiency and effectiveness
for various benchmark datasets. To perform both internal and external denoising, we extract
overlapping patches yi, i = 1, . . . ,M of a fixed size m× n from the input at a regular stride.
Let xint

i denote the patch centred at pixel i, which has been denoised by BM3D. To obtain
the final denoised image, we combine the internal denoising result xint

i with the external one
xext

i based on the level of smoothness νi.
The noise variance can be estimated using an approximated filtered image ỹ, which is

obtained by an existing denoising algorithm such as BM3D [10]. Let var(ỹi) denote the the
signal variance of the pre-filter patch ỹi while var(ni) denotes its noise variance. The patch
noise variance is then yielded as var(ni)≈ var(yi− ỹi).

To determine whether to apply internal or external denoising to a patch yi, we eval-
uate its level of smoothness as defined by the patch SNR metric presented in [28] νi =√

var(ỹi)
var(ni)

. Next, we qualify whether a patch is smooth or highly textured with a threshold

τ = max(0.15,0.5− 0.5
√

σn
255 ). Specifically, if νi ≤ τ , we consider the patch smooth and

apply only internal denoising to it, i.e. xi = xint
i . Otherwise, we weigh xext

i and xint
i according

to xi = νixext
i +(1−νi)xint

i to complement the low frequency details for the external denoised
patches.
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Internal Only External Only Combined
24.94 25.58 26.23

Table 1: The denoising performance of individual components for σn = 70 on the Gore
dataset. Combining both internal and external components improves the PNSR metric.

To recover the full image, we translate the patches to their original locations and average
the values of overlapping patches at shared pixels. Let Qi denote the patch extraction matrix
at the i-th pixel of an image, i.e. xi = QiX. With the known matrices Qi’s, the latent image
is the optimal solution to the problem

X∗ = argmin
X

λ0‖X−Y‖2
2 +

M

∑
i=1
‖QiX−xi‖2

2. (10)

where λ0 is a positive constant. The least-squares solution to the above equation is

X∗ =

(
λ0I+

M

∑
i=1

QT
i Qi

)−1(
λ0Y+

M

∑
i=1

QT
i xi

)
(11)

3 Experiments
We first analyse different aspects of our proposed method and then compare the whole
method with state-of-the-art algorithms, including BM3D [10], WNNM [19], SAIST [13],
EPLL [39], PCLR [15], PGPD [31], TID [27] and CID [27]. Furthermore, we modify in-
ternal denoising methods, including NLM [2], SAPCA [11], TSID [37] and BM3D [10] to
take extra input from external class-specific datasets and term denote as eNLM, eSAPCA,
eTSID, and eBM3D, respectively.

We generate noisy input images from the original noise-free data using Gaussian noise
with standard deviations of σn = 20,25,30,40,50,70,80,100. We use PSNR as the met-
ric for quantitative evaluation. In the following experiments, we set the parameters of our
algorithm as k = 8, Zi = 16, λ0 = 1, λ1 = 0.5, and λ2 = 10.
Datasets: We experimented on five datasets to demonstrate performance of our algorithm.
These datasets include face [29], text [27], bike [16] and buildings [35]. We also present
ample qualitative results on the mentioned datasets as well as on another category Multi-
view [20] in supplementary materials. In each dataset under study, we arbitrarily select
between 10 and 20 images, from which noisy images are generated as input to denoising
algorithms. For each noisy image, we take five other clean images from the same dataset as
external input to our algorithm.

3.1 Ablation study
Separate and combined internal & external denoising: Here, we present the effect of
individual denoising components and their combined effect. Table 1 present average PSNR
values on 14 test images of Gore dataset for σn = 70. A higher PSNR value is obtained when
both components are combined, confirming our motivation behind the proposed scheme.
Number of patches: Table 2 demonstrates the denoising performance of our algorithm with
respect to the number of patches. We can observe that the denoising performance degrades by
a little margin as the number of patches increases. This decrease may be due to incorporation
of dissimilar patches for denoising.
Number of external images: In our algorithm, external images are important and here we
show the impact of different number of external images on outcome of our algorithm. The
last row of the table 2 shows the denoising results with respect to the increase in number of
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No of Patches/Images
Effect of 8 16 24 32 40
Patches 27.53 27.49 27.45 27.43 27.41
Images 27.53 27.54 27.57 27.57 27.59

Table 2: Variation of PSNR for the Gore dataset and σn = 50 with respect to the number of
external patches and the number of external images.

TRAIN
T

E
ST

Datasets Face Views Text Bike Natural
Face 27.66 25.55 18.45 25.83 25.78

Views 25.79 29.02 22.91 26.56 26.57
Text 15.99 18.44 24.87 20.11 19.44
Bike 20.97 22.70 21.77 25.15 22.81

Natural 27.27 27.75 27.69 27.95 28.74
Table 3: The performance of our algorithm for σn = 50, with the external dataset from
different categories. The PSNR is maximum along the diagonal, when the external category
matches the test category.

external images. It is obvious that performance improves as the number of images increases,
however, the improvement becomes stagnated after specific increase in number.
Choice of external image category: We demonstrate the impact of the correct external
image category on the denoising performance. In table 3, the PSNR value degrades when
denoising is assisted by a dissimilar category while its results reaches maximum when same
category is used for denoising. This experiment further confirms the importance of category
specific information for denoising.
Running time: We implemented our algorithm in MATLAB. For an image of 455×280,
it takes about 10s to retrieve structurally similar external images from a category specific
dataset of 810 images. The processing time for patch search, internal denoising and external
denoising is about 0.6s, 6s and 106s. In short, the total processing time for our method is
about 122.6s. On other hand, the denoising methods such as BM3D, PCLR, WNNM and
TID takes 0.6s, 74s, 129s and 265s, respectively.

3.2 Face images
Face images are an important part of many computer vision tasks such as human surveillance,
tracking and recognition. Face images are usually corrupted when captured in low light
conditions, hence, denoising maybe required as an initial step for the mentioned tasks. Here,
we show the capability of our algorithm to denoise human face images. To this end, we
randomly select 14 images from the Gore [29] dataset as the test set while using others as
the training set. The comparison between our method and others is shown in Figure 5(a). As
observed, our algorithm outperforms others on all noise levels.

Figure 2 demonstrate the qualitative results on a sample image from Gore [29] dataset
and illustrates that our algorithm restores aesthetically pleasing texture. In our results the
image details are more similar to the ground-truth and numerically higher than others. Also,
the denoising results of the modified algorithms perform comparable to their original imple-
mentations. This experiment illustrates that in the presence of a good dataset only, superior
performance cannot be achieved, rather we need a laborious and carefully designed algo-
rithm to exploit the external datasets.

3.3 Text images
We evaluate our algorithm for text denoising on the same dataset as reported in [27]. In Fig-
ure 5(b), we show the PSNR curve for each denoising method averaged over a range of noise
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Original Input BM3D [10] eBM3D [10] eSAPCA [11] EPLL [39] SAIST [13]
20.18 dB 30.55 dB 29.61 dB 28.33 dB 30.62 dB 30.45 dB

eNLM [2] eTSID [37] PCLR [8] PGPD [32] WNNM [19] TID [27] Ours
28.76 dB 28.89 dB 30.52 dB 30.55 dB 30.68 dB 30.61 dB 31.72 dB

Figure 2: Comparison of denoising methods on face images from the dataset in [29] for
σn = 25. Our method is able to recover sharp edges with less artifacts than the state-of-the-
art.

Input BM3D [10] PCLR [8] PGPD [32] WNNM [19] TID [27] Ours
8.14 dB 17.41 dB 19.37 dB 17.85 dB 18.71 dB 20.09 dB 20.74 dB

Figure 3: Comparison for σn = 100 on a text image from the dataset in [27]. Our method is
able to recover sharper text edges without artifacts compared with the state-of-the-art.

Input BM3D [10] PCLR [8] PGPD [32] WNNM [19] TID [27] Ours
16.09 dB 25.66 dB 26.43 dB 26.02 dB 26.27 dB 21.63 dB 27.36 dB

Figure 4: Denoising results on a bike image [16], for σn = 40. Our method is able to recover
sharp boundaries around the bike.

levels. Our proposed algorithm performs at least 5 dB better than state-of-the-art BM3D. We
also observe that TID [27] performs below average for low noise (σn < 50) as it is unable
to handle variation in the images of the text dataset. In addition, Figure 3 demonstrates the
qualitative result for a high level of white noise, i.e. σn = 100. Our algorithm produces sharp
edges and crisper text than the competing methods, which in most cases, exhibit artifacts in
the form of distorted text.

3.4 Bike images
In Figure 5(c), we plot and compare the denoising results on Bike dataset [16]. This experi-
ment also show that other external denoising methods such as CID [35] and TID [27] fails to
exploit the external dataset due to high variation in the images. TID [27] is unable to exploit
the external images due patch variety of the bike image dataset, and hence poor results. Sim-
ilarly, CID [35] failed to do registration with the external images and produce results similar
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(a) Face images (b) Text images (c) Bike images

Figure 5: The PSNR of denoised images with respect to the noise standard deviation over:
(a) 14 face images with a size of 65×90, (b) text images with a size of 200×200, (c) bike
images with a size of 320×200.

Images σn
Methods

BM3D [10] EPLL [39] SAIST [13] PCLR [8] PGPD [32] WNNM [19] TID [27] CID [35] Ours
50 27.56 27.23 27.42 27.54 27.64 27.79 23.23 26.80 28.18

d 70 26.22 25.85 26.20 26.22 26.32 26.48 22.48 26.03 27.01
90 25.23 24.88 25.26 25.29 25.32 25.51 21.59 25.25 26.06
50 28.88 28.45 28.58 28.85 28.94 29.14 21.87 28.50 29.30

f 70 27.55 27.17 27.41 27.66 27.67 27.83 21.29 27.75 28.13
90 26.62 26.26 26.45 26.82 26.73 26.85 20.92 26.91 27.34

Table 4: Comparisons on the Building dataset [35]. The results for CID are reproduced
from [35]. The best results are highlighted in bold.

to BM3D [10]. On the other hand, our scheme outperforms competing algorithms as noise
level increases. This suggests that our method is able to retrieve information from external
image. Figure 4 illustrates that the proposed scheme recovers more details on the tyres while
SAIST and PGPD oversmooth them and BM3D, EPLL and TID generate artifacts.

3.5 Building images
Our algorithm also produce superior results on the building images introduced with the Com-
bined Image Denoising (CID) method [35]. For this purpose, we select the images “d” and
“f” and simulate their noisy versions at σn = 50,70 and 90 as reported in [35]. For each input
image, we search for patches in five related images as its external dataset. Table 4 shows that
our proposed scheme outperforms various state-of-the-art methods on these images. Specifi-
cally, our algorithm outperforms CID [35] by more than 1 dB. This experiment confirms that
we are able to achieve better PNSR by incorporating patches from other related images.

4 Conclusion
Single image denoising algorithms are approaching performance limit. To overcome this
deficiency, we propose a novel algorithm which apply internal denoising to smooth regions
and combines internal and external denoising for textured regions. We also present a patch
matching technique to improve the reference patch search performance. Extensive experi-
mental results demonstrated that our algorithm significantly outperform competitive methods
qualitatively and numerically for many noise levels.
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